JUC基础-8-JUC读写锁
本文最后更新于 2023-09-19,文章内容可能已经过时。
8 读写锁

8.1 读写锁介绍
现实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁。在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源;但是如果一个线程想去写这些共享资源,就不应该允许其他线程对该资源进行读和写的操作了。
针对这种场景,JAVA 的并发包提供了读写锁 ReentrantReadWriteLock,它表示两个锁,一个是读操作相关的锁,称为共享锁;一个是写相关的锁,称为排他锁
- 线程进入读锁的前提条件:
-
没有其他线程的写锁
-
没有写请求, 或者有写请求,但调用线程和持有锁的线程是同一个(可重入锁)。
- 线程进入写锁的前提条件:
-
没有其他线程的读锁
-
没有其他线程的写锁
而读写锁有以下三个重要的特性:
(1)公平选择性:支持非公平(默认)和公平的锁获取方式,吞吐量还是非公平优于公平。
(2)重进入:读锁和写锁都支持线程重进入。
(3)锁降级:遵循获取写锁、获取读锁再释放写锁的次序,写锁能够降级成为读锁。
8.2 ReentrantReadWriteLock
ReentrantReadWriteLock 类的整体结构
public class ReentrantReadWriteLock implements ReadWriteLock,
java.io.Serializable {
/** 读锁 */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** 写锁 */
private final ReentrantReadWriteLock.WriteLock writerLock;
final Sync sync;
/** 使用默认(非公平)的排序属性创建一个新的
ReentrantReadWriteLock */
public ReentrantReadWriteLock() {
this(false);
}
/** 使用给定的公平策略创建一个新的 ReentrantReadWriteLock */
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
/** 返回用于写入操作的锁 */
public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
/** 返回用于读取操作的锁 */
public ReentrantReadWriteLock.ReadLock readLock() { return readerLock; }
abstract static class Sync extends AbstractQueuedSynchronizer {}
static final class NonfairSync extends Sync {}
static final class FairSync extends Sync {}
public static class ReadLock implements Lock, java.io.Serializable {}
public static class WriteLock implements Lock, java.io.Serializable {}
}
可以看到,ReentrantReadWriteLock 实现了 ReadWriteLock 接口,ReadWriteLock 接口定义了获取读锁和写锁的规范,具体需要实现类去实现;同时其还实现了 Serializable 接口,表示可以进行序列化,在源代码中可以看到 ReentrantReadWriteLock 实现了自己的序列化逻辑。
8.3 入门案例
场景: 使用 ReentrantReadWriteLock 对一个 hashmap 进行读和写操作
8.3.1 实现案例
class Cache {
private final HashMap<String, Object> map = new HashMap<>();
private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
public void put(String key, Object value) {
try {
System.out.println(Thread.currentThread().getName() + " is writing....");
TimeUnit.SECONDS.sleep(1);
map.put(key, value);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
public Object get(String key) {
try {
System.out.println(Thread.currentThread().getName() + " is reading....");
TimeUnit.SECONDS.sleep(1);
return map.get(key);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
public class ReadWriteLockDemo {
public static void main(String[] args) {
Cache cache = new Cache();
for (int i = 1; i <= 5; i++) {
String num = "num::" + String.valueOf(i);
new Thread(() -> {
cache.put(num, num);
}, "Thread::" + String.valueOf(i)).start();
}
for (int i = 1; i <= 5; i++) {
String num = "num::" + String.valueOf(i);
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + " get value : " + cache.get(num));
}, "Thread::" + String.valueOf(i)).start();
}
}
}
此时不加读写锁,发现写的同时读操作也会进行,导致得到了null值。
Thread::2 is writing....
Thread::5 is reading....
Thread::1 is reading....
Thread::3 is reading....
Thread::2 is reading....
Thread::4 is writing....
Thread::5 is writing....
Thread::4 is reading....
Thread::1 is writing....
Thread::3 is writing....
Thread::1 get value : null
Thread::3 get value : null
Thread::5 get value : null
Thread::4 get value : null
Thread::2 get value : num::2
如果此时加读写锁,就能避免如上现象
class Cache {
private final HashMap<String, Object> map = new HashMap<>();
private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
public void put(String key, Object value) {
try {
rwLock.writeLock().lock();
System.out.println(Thread.currentThread().getName() + " is writing....");
TimeUnit.SECONDS.sleep(1);
map.put(key, value);
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally {
rwLock.writeLock().unlock();
}
}
public Object get(String key) {
try {
rwLock.readLock().lock();
System.out.println(Thread.currentThread().getName() + " is reading....");
TimeUnit.SECONDS.sleep(1);
return map.get(key);
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally {
rwLock.readLock().unlock();
}
}
}
public class ReadWriteLockDemo {
public static void main(String[] args) {
Cache cache = new Cache();
for (int i = 1; i <= 5; i++) {
String num = "num::" + String.valueOf(i);
new Thread(() -> {
cache.put(num, num);
}, "Thread::" + String.valueOf(i)).start();
}
for (int i = 1; i <= 5; i++) {
String num = "num::" + String.valueOf(i);
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + " get value : " + cache.get(num));
}, "Thread::" + String.valueOf(i)).start();
}
}
}
此时可以看到,加了写锁之后,此时写锁是排他锁,读的线程在写线程没写完前都无法读到,而写完后,读锁是共享锁,如果不加线程睡眠,会同时读出。
Thread::1 is writing....
Thread::2 is writing....
Thread::3 is writing....
Thread::4 is writing....
Thread::5 is writing....
Thread::1 is reading....
Thread::2 is reading....
Thread::3 is reading....
Thread::4 is reading....
Thread::5 is reading....
Thread::1 get value : num::1
Thread::5 get value : num::5
Thread::4 get value : num::4
Thread::3 get value : num::3
Thread::2 get value : num::2
8.4 小结(重要)
-
在线程持有读锁的情况下,该线程不能取得写锁(因为获取写锁的时候,如果发现当前的读锁被占用,就马上获取失败,不管读锁是不是被当前线程持有)。
-
在线程持有写锁的情况下,该线程可以继续获取读锁(获取读锁时如果发现写锁被占用,只有写锁没有被当前线程占用的情况才会获取失败)。
原因: 当线程获取读锁的时候,可能有其他线程同时也在持有读锁,因此不能把获取读锁的线程“升级”为写锁;而对于获得写锁的线程,它一定独占了读写锁,因此可以继续让它获取读锁,当它同时获取了写锁和读锁后,还可以先释放写锁继续持有读锁,这样一个写锁就“降级”为了读锁。
- 感谢你赐予我前进的力量